
The integer quantum Hall transition and random su(N) rotation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys.: Condens. Matter 15 L125

(http://iopscience.iop.org/0953-8984/15/4/103)

Download details:

IP Address: 171.66.16.119

The article was downloaded on 19/05/2010 at 06:30

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/15/4
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 15 (2003) L125–L132 PII: S0953-8984(03)57566-X

LETTER TO THE EDITOR

The integer quantum Hall transition and random
su(N ) rotation

Stanislav Boldyrev1 and Victor Gurarie2

Institute for Theoretical Physics, Santa Barbara, CA 93106, USA

Received 17 December 2002
Published 20 January 2003
Online at stacks.iop.org/JPhysCM/15/L125

Abstract
We reduce the problem of the integer quantum Hall transition (QHT) to a random
rotation of an N-dimensional vector by using an su(N) algebra, where only N
specially selected generators of the algebra are nonzero. The group-theoretical
structure revealed in this way allows us to obtain a new series of conservation
laws for the equation describing the electron density evolution in the lowest
Landau level. The resulting formalism is particularly well suited to numerical
simulations, allowing us to obtain the critical exponent ν numerically in a very
simple way. We also suggest that if the number of nonzero generators is much
less than N , the same model, in a certain intermediate time interval, describes
percolating properties of a random incompressible steady two-dimensional
flow. In other words, the QHT in a very smooth random potential inherits
certain properties of percolation.

1. Introduction

The quantum Hall transition (QHT) is a delocalization transition of a particle moving on a
two-dimensional plane with a random potential and a strong magnetic field perpendicular to
the plane [1]. Recently, an elegant approach to this transition was suggested by Sinova et al [2].
The idea of the method is to consider the quantum mechanical states of a particle belonging to
the lowest Landau level, and to project the density operators ρ̂(x, t) onto these functions. The
spatial correlation properties of the particle can then be described by the correlation function
of these projected density matrices, G(x, t) = Tr(ρ̂(x, t)ρ̂(0, 0)), or by its average, 〈G(x, t)〉.
In this formula, ‘Tr’ corresponds to summing over all the states of the lowest Landau level,
and the angular brackets denote averaging over the random potential.

In a certain sense, G(x, t) is the probability of transition of a quantum particle from
the origin to point x in the course of time t . This statement would be exactly true if we
allowed the particle to travel over all the quantum states, i.e., not only those belonging to the
lowest Landau level. Not having the full system of wavefunctions prevents us from localizing
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the particle at a distance smaller than the magnetic length l2 = h̄c/(eB). For example,
the initial condition for the G-function describing a particle placed at the origin has the form
G(x, 0) = A exp(−x2/2l2), with some normalization constant A. However, for strong enough
magnetic fields, the magnetic length l is much smaller than the size of the system and particles
can be adequately localized.

The projected density operators obey the Schrödinger equation

ih̄
∂

∂ t
ρ̂ = [Ĥ, ρ̂], (1)

whose Hamiltonian is just the random potential V (x) projected onto the lowest Landau level,
Ĥ = ∫

d2x V (x)ρ̂(x). The correlation function G satisfies an analogous equation, which due
to remarkably simple commutation relations between the projected density operators ρ̂, can
be written in the Fourier space (k is a two-dimensional vector, k = (k1, k2)) as [2]

ih̄
∂

∂ t
G(k, t) =

∫
d2q 2i sin

(
l2

2
k × q

)
V (k − q) exp

[
− l2

2
(k2 − k · q)

]
G(q, t). (2)

For a simple, ‘from first principles’, derivation of this equation we refer the reader to [3]. All
the information about the QHT is contained in this equation, which we use as a starting point
in the present work (see also [4]).

Unfortunately, it is not obvious how to solve this equation analytically. However, it is
physically clear that only N degrees of freedom should be relevant in the evolution described
by (2), where N is the number of states in the lowest Landau level. It must therefore be
possible to reduce the infinite-dimensionalequation (2) to an N-dimensional dynamical system
preserving all the physics of the QHT. Such a reduction would also be cost-effective for
numerical calculations of the localization exponent on the basis of equation (2). A simple
introduction of a cut-off in the k-space cannot be satisfactory, since it breaks the symmetry
of the system. In this letter, we demonstrate another, rather effective, way of excluding
the irrelevant degrees of freedom. We perform the reduction by revealing the hidden group-
theoretical structure of equation (2). We reduce the problem of the QHT to a finite-dimensional
problem of a random rotation by banded su(N) matrices with the bandwidth n ∼ √

N . We
show that equation (2) admits a series of conserved integrals of motion that were not known
before, and that are preserved in our model. We also show that when the width of the band, n,
is much smaller than

√
N , our model describes classical percolation.

Let us start with the formal classical limit l → 0. In this case, equation (2) is simplified
considerably:

∂

∂ t
G(x, t) = εi j ∂i V (x) ∂ j G(x, t). (3)

A formal solution to (3) can be written at once [3]. It is G(x, t) = δ(x − x(t)) where
dxi
dt = εi j ∂ j V (x), equations which were thoroughly studied in [5]. From here it is easy to

deduce that we are trying to describe a particle which percolates along the equipotential lines
of a random potential. Physically, this quasiclassical limit describes a slow drift of the guiding
centre of a little Larmor circle, around which the particle is rotating fast in a strong magnetic
field. This drift occurs due to the force F (x) ∼ ∇V (x), and its velocity is v(x) = F (x)×B.
Obviously that does not capture the physics of the QHT. The apparent paradox is resolved if
we note that the Larmor circle cannot be made smaller than l, and will therefore be eventually
destroyed.

The reason that a solution to (3) was so easy to write down lies in its infinitely many
integrals of motion. Indeed, it is not hard to check that any expression of the form

Imn =
∫

d2x Gm V n (4)
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is conserved along the solutions of (3). The conservation of I10 and I11 is simply a consequence
of the conservation of probability and energy. Higher-order integrals are the consequence of
incompressibility of the velocity field v(x). Now, in a quite remarkable way, these integrals of
motion do not get destroyed as one goes back to the original equations (2), at least for integer
m and n. They only get slightly modified.

To see that, let us put the particle on a torus. The wavefunctions of the lowest Landau
level can be written explicitly in the Landau gauge:

ψα(x, y) =
[∑

m

exp

(
2π(x + iy)(Nm + α) − (Nm + α)2

N
π

)]
e−π N x2

. (5)

Here 0 � x, y � 1, N denotes the number of flux quanta through the torus, and α goes from 0
to N − 1, labelling the N states on the torus in the lowest Landau level. These wavefunctions
describe the electron localized along a narrow strip around the line x = α/N . Notice that the
magnetic length l is now automatically chosen in the form

l2 = 1

2π N
. (6)

It is now a matter of simple calculation to project the density operators ρ̂(k1,k2) ≡
exp(2π i(k1x + k2 y)) onto the lowest Landau level on the torus. In this notation, k1 and
k2 are integers. As a result, the density operators are now N × N matrices in the basis of
states (5), which can be written in the following form.

Consider a pair of unitary unimodular N × N matrices:

h =



0 1 · · · · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
1 · · · · · · · · · 0


 , (7)

f = diag(1, ε, . . . , εN−1), (8)

where h is a cyclic permutation matrix, and ε = exp(2π i/N). These matrices have the
following properties: h f = ε f h, hN = f N = 1. Now introduce the matrices

L(k1,k2) = εk1k2/2 f k1 hk2 , (9)

where (k1, k2) �= (0, 0). The matrices L(k1,k2) are periodic in k1 and k2 with period N up to
coefficient ±1. They can be chosen as a basis for the su(N) algebra. The product and the
commutator of two such operators have the following forms:

Lq L p = exp

(
π i

N
q × p

)
Lq+p, (10)

[Lq , L p] = 2i sin

(
π i

N
q × p

)
Lq+p. (11)

One can easily write down the explicit expression for the matrix elements of these matrices:

(L(k1,k2))α,β = εk1k2/2+k1(α−1)δα,β−k2 |mod N . (12)

Then the density operator can be expressed in terms of these matrices as

ρ̂(k1,k2) = exp

(
−k2

1 + k2
2

2N
π

)
L(k1,k2). (13)

To be specific, equation (13) gives the density operator in the Schrödinger representation, as
opposed to (1) where the Heisenberg representation was assumed. From this point on, we will
understand ρ̂ as a time-independent density operator.
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It is not difficult to check that the density operator written in this form does indeed satisfy
the commutation relations discussed in the literature (for example, see [2] and references
therein) with the magnetic length chosen according to (6).

The projected Hamiltonian takes the form

Ĥ =
∑
k1k2

V (−k1,−k2)ρ̂(k1,k2). (14)

Since the Fourier components of the potential V (x) are random, we see that the Hamiltonian
is none other than a random su(N) matrix. This completes the projection to the lowest
Landau level on the torus. At this point we can easily rederive (2) simply by writing ρ̂ as
a matrix and commuting it with the Hamiltonian Ĥ as prescribed in (1) using the explicit
matrix definitions (13). Finally, let us introduce the matrix Ĝ = ∑

k1k2
g(k, t)L(k1,k2), where

g(k) = G(k) exp(k2l2/4). Here as a consequence of choosing k1 and k2 on the torus as integer
numbers, we use the notation k = 2π(k1, k2). As a consequence of (2), it satisfies an equation
identical to (1):

ih̄
∂

∂ t
Ĝ = [Ĥ , Ĝ]. (15)

Through all these manipulations we succeeded in reducing the original problem of a
particle on an infinite plane in a random potential to a problem with a finite number of degrees
of freedom. That allows us immediately to write down the generalizations of the integrals of
motion (4). Indeed, since a trace of a commutator of finite matrices is equal to zero,

Ĩmn = Tr(Ĝn Ĥ m) (16)

is conserved. These integrals can be expressed in terms of G(k, t) and V (k) using explicit
expressions for the matrices ρ̂.

The first few integrals in (16) coincide with their ‘classical’ counterparts in (4). For
example, Ĩ10 and Ĩ11 are equal to I10 and I11 and are still the probability and energy conservation,
respectively. Higher-order integrals of motion become increasingly more complicated. For
example,

I30 =
∑
k,s,r

g(k)g(s)g(r − k − s) exp

[
π i

N
(k × s + k × r + s × r) + π iNr1r2

]
. (17)

Here k = 2π(k1, k2), s = 2π(s1, s2), r = 2π N(r1, r2), g(k) = G(k) exp[−π(k2
1 +k2

2)/(2N)],
and the summation is over integer k1, k2, s1, s2, r1, and r2.

Despite being rather complicated, this expression reduces to its classical counterpart,
I30 = ∫

d2x G3(x), in the limit l → 0 (N → ∞). It is of course possible to show, after some
algebra, that it is indeed conserved under the time evolution (2). A simple mathematical feature
lies behind this: in the limit N → ∞, the operators ρ̂ become the generators of the group
of volume-preserving diffeomorphisms on a torus [6, 7]. Such a group represents motion of
an incompressible fluid, which is precisely the meaning of (3), with V (x) being the so-called
stream function.

2. Quantum Hall transition

We are going to demonstrate now that all the features of the QHT are preserved in this picture.
Consider a particle placed in one of the states (5). That means that it is localized along the
x-direction and is extended along the y-direction. Wait some time t and measure the average
square of the displacement of the particle along the x-direction:

〈x2(t)〉 ∝ 1

N3

N∑
α,β=1

|(e(i/h̄)Ĥ t)αβ |2(α − β)2, (18)
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where ( )αβ denotes the matrix element of the matrix inside the brackets.
We expect, following [2, 3], the deviation 〈x2(t)〉, at large enough times but before the

finite size of the system is reached, to behave as

〈x2〉 ∼ t1−1/(2ν). (19)

The critical exponent ν is to be determined, and is believed to be close to 7/3. To explain
equation (19), note that in the lowest Landau level band, the localization length ξ(E) diverges
as the particle energy approaches the central energy of the band, ξ(E) = |E − Ec|−ν . We
require that for E = Ec the particle undergo a normal diffusion, 〈x2〉c ∼ t , to a very large
distance, but for E �= Ec, the diffusion must occur only until x ∼ ξ(E); after that the particle
gets localized at the localization length x ∼ ξ(E). For a given t , the number of energy levels
�E contributing to the diffusion is thus �E−2ν ∼ t , which leads to the anomalous diffusion
law 〈x2〉 ∼ t �E ∼ t1−1/(2ν) .

The Hamiltonian (14) appears to be a linear combination of su(N) matrices with random
coefficients. However, if it were indeed a random su(N) matrix with probability distribution
invariant under su(N) rotations, it would lead to a particle instantaneously hopping all over
the torus. In fact, such a Hamiltonian would be unphysical. As a consequence of the
strong exponential suppression of high Fourier modes in the density operators (13), the su(N)

rotation-invariant Hamiltonian corresponds to the random potential V (x) varying considerably
at distances much smaller than the magnetic length. In fact, in the continuum limit it would
lead to the potential having Fourier harmonics growing exponentially at large k, as follows
from the analysis of (13).

A more physical setting involves a potential whose Fourier harmonics at least do not grow
at large k. While it is possible to choose a particular random V (x) exhibiting this property and
compute the Hamiltonian (14), it is not necessary to do so. Instead, we can just point out that
the exponential in (13) strongly suppresses high Fourier harmonics of the random potential,
such that k1, k2 > n = √

2N/π . Therefore, we can simply choose the Hamiltonian to be

Ĥ =
n∑

k1,k2=−n

v(k1,k2)L(k1,k2), (20)

where v(k1,k2) are random independent variables with equal mean square values 〈v2〉. The
crucial part of (20) is that the Hamiltonian is a linear combination of only N generators of the
su(N) algebra out of a total of N2 generators, with random coefficients. From the explicit
form (12) of matrices L(k1,k2), we see that the random matrix Ĥ has nonzero elements only on
the diagonal strip of width ∼N1/2. Within the strip, only the matrix elements no further than
∼N1/2 from each other along a given diagonal are correlated with each other. Such banded
random matrix theory, which reproduces the physics of the QHT, was considered in a similar
context in [8, 9], although the Hamiltonian (20) was not introduced there. We emphasize that
the geometry of the torus was particularly convenient in helping us to arrive at (20), but was
not at all necessary. Equation (19) is true only for moderate times t when the particle would
not have reached the boundary of the system, and so the geometry of the sample is irrelevant.

This framework provides a very convenient setting for numerical calculation of ν. Below
we present the numerical simulations for a 1000 × 1000 matrix. The Hamiltonian has been
chosen in the form (20). The random coefficients v(k1,k2) have thus been generated in the
square |k1|, |k2| < n = √

2N/π , and the real and imaginary parts of each Fourier mode
v(k1,k2) = v∗

(−k1,−k2) were chosen randomly, independently, and uniformly from the interval
[−0.5, 0.5]. Instead of calculating the matrix exponent in (18) directly, we have simulated the



L130 Letter to the Editor

Figure 1. log(〈x2〉) is plotted as a function of log(t) for N = 1000, n = 15. The light line has the
slope 0.79 which corresponds to ν = 2.38.

equation

∂

∂ t
Zα = i

∑
β

Ĥαβ Zβ, (21)

where Zα is a wavefunction in the representation of the states on the torus. It is easy to check
that in this representation,

g(k1, k2) = Z∗
α[L(k1,k2)]αβ Zβ, (22)

where g(k) was introduced in (17).
After the random potential Ĥ had been generated, and the initial distribution had been

chosen in the form

Zα =
{

1, if α = α0,

0, otherwise,
(23)

the dispersion 〈x2(t)〉 = ∑
α(α − α0)

2|Zα|2 was calculated as a function of time. The same
calculation was performed for all the initial positions of the particle, α0 = 1, . . . , N , and the
average was taken over all such realizations. The result is shown in figure 1. As we see, we
closely reproduce the universally accepted value of ν without much difficulty.

3. Discussion and conclusions

As was already discussed, a naive l → 0 limit leads to the percolation picture of the QHT.
However, l → 0 is the same as N → ∞. It should indeed be possible to reproduce the
percolation behaviour if the scale of the random potential is much larger than the magnetic
length l, but much smaller than the size of the system. In other words, we need to keep only
those modes in (14) for which 1 � n � N1/2. The percolating behaviour holds until the
width of the diagonal strip of the matrix exp(iĤ t) becomes equal to N1/2. After that, the
regime changes to the QHT. The square of this width is given by (18), and therefore grows as
t1−1/(2ν∗), with the percolation ν∗ equal to 4/3. The crossover time (mixing time) is thus equal,
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in physical units, to V0tm/h̄ ∼ (N/n2)2ν∗/(2ν∗−1) ∼ (l0/ l)4ν∗/(2ν∗−1), where l0 is the scale of
the random potential and V0 is its typical amplitude. The percolation (or classical) regime
is valid for t < tm . We stress that the mixing time was estimated for the second moment of
the deviation; in general, different moments may exhibit different mixing times, due to the
multifractal character of the eigenstates with E ∼ Ec.

Our simulations of equation (21) show that for n � (2N/π)1/2, the behaviour of x2

coincides with (19) at t → ∞, but follows some intermediate asymptotics before that. We
expect these asymptotics to be identical to those describing steady percolating flow of an
incompressible two-dimensional fluid, i.e., ν∗ = 4/3. This seems to agree with our numerics,
but more extensive simulations are required. In the other limit, n � √

2N/π , the behaviour
becomes diffusive; 〈α2〉 ∼ t .

It is instructive to directly observe from the formulae (21) and (12) how the quasiclassical
transition is made in the limit n � N1/2. Let us keep n fixed and formally take the limit
N → ∞. Then introducing a new function ψ(x, t) ≡ Z(α = x N/2π, t), and using the
notation 2π/N → a = 4π2h̄c/(eB), we get the following path-integral representation for the
wavefunction ψ(x, t):

ψ(x, t) =
∫ q(t)=x

Dq Dp exp

{
i

a

∫ t

0
[pq̇ − V (p, q)] dt

}
, (24)

where V (x1, x2) is a random potential in a configuration space, and the symmetric Weyl time
discretization (ordering of p̂ and q̂) is implied. We thus obtain that the classical trajectories
simply correspond to percolations in a two-dimensional phase space of one-dimensional
quantum mechanics with Hamiltonian V (p, q)! However, if we carefully follow the transition
from (21) and (12) to (24), we observe that the variables p and q are both discretized with
a step that is ∼√

a. We are not allowed to set this spatial cut-off to zero independently of
h̄, which leads to breakdown of the quasiclassical solution at large times. This mechanism
resembles that of the appearance of anomalies in quantum field theories.

In real experiments, the random potential length is often much larger than the magnetic
length l. It would be interesting to devise an experiment which would probe the intermediate
percolation asymptotics, perhaps by looking at finite-frequency conductivity.

In conclusion, we have presented a model that reduces the problem of the QHT to a finite-
dimensional problem of random rotation by su(N) matrices. As a consequence, equation (2)
describing the QHT admits a series of integrals of motion. The random rotation matrix Ĥ is
quite arbitrary, except for the dependence on the parameter N through the exponential cut-off
in (13). This rather crucial dependence amounts to the vanishing of all the matrix elements
but those belonging to a diagonal strip of width n ∼ N1/2. Within this framework, the QHT
exponent ν can easily be evaluated numerically. Attempts to change n independently of N
lead to other models, e.g. those describing diffusion and percolation in a steady incompressible
2D flow. That leads to a prediction that in very smooth potentials the QHT should exhibit some
properties of percolation.

We are grateful to A Zee, J Chalker, I Gruzberg, A W W Ludwig, and A Kamenev for important
discussions. This work was supported by the NSF grant PHY 94-07194.

References

[1] Huckestein B 1995 Rev. Mod. Phys. 67 357
[2] Sinova J, Meden V and Girvin S M 2000 Phys. Rev. B 62 2008
[3] Gurarie V and Zee A 2000 Preprint cond-mat/0008163
[4] In an interesting subsequent development,



L132 Letter to the Editor

Oganesyan V, Chalker J T and Sondhi S L 2002 Preprint cond-mat/02012232
showed that an equation similar to (2) can be formulated for any quantum mechanical system, not only for a

particle in a magnetic field projected to the lowest Landau level.
[5] Evers F and Brenig W 1994 Z. Phys. B 94 155

Evers F 1997 Phys. Rev. E 55 2321
[6] Arnold V I and Khesin B A 1998 Topological Methods in Hydrodynamics (New York: Springer)
[7] Zeitlin V 1991 Physica D 64 353
[8] Huckestein B and Kramer B 1989 Solid State Commun. 71 445
[9] Mieck B 1993 Z. Phys. B 90 427

Mieck B and Weidenmuller H 1991 Z. Phys. B 84 59


